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SUMMARY

Hybrid three-dimensional algorithms for the numerical integration of the incompressible Navier–Stokes
equations are analyzed with respect to hydrodynamic stability in both linear and nonlinear �elds. The
computational schemes are mixed—spectral and �nite di�erences—and are applied to the case of the
channel �ow driven by constant pressure gradient; time marching is handled with the fractional step
method. Di�erent formulations—fully explicit convective term, partially and fully implicit viscous term
combined with uniform, stretched, staggered and non-staggered meshes, x-velocity splitted and non-
splitted in average and perturbation component – are analyzed by monitoring the evolution in time
of both small and �nite amplitude perturbations of the mean �ow. The results in the linear �eld are
compared with correspondent solutions of the Orr–Sommerfeld equation; in the nonlinear �eld, the
comparison is made with results obtained by other authors. Copyright ? 2002 John Wiley & Sons, Ltd.

KEY WORDS: Navier–Stokes equations; incompressible three-dimensional �uid �ow; unsteady
channel �ow; hybrid spectral-�nite di�erence numerical techniques; linear and
nonlinear hydrodynamic stability

1. INTRODUCTION

Among two of the main approaches to the numerical integration of the Navier–Stokes equations
—spectral methods and �nite di�erence methods—advantages and disadvantages can be out-
lined. Spectral methods are highly accurate while di�cult to be used in general geometries
and grids; they are also mathematically complicated and, as a consequence, not so straight-
forward to be implemented in computational codes. Finite di�erences are less complicated
methods but they are in general characterized by lower accuracy as compared with spectral
algorithms.
With respect to the channel �ow problem, purely spectral techniques have been used by

Kim et al. [1] at Re=3300 (based on channel half width) by using a Fourier–Chebyshev
computational algorithm; the time advancement is carried out by means of a semi-implicit
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scheme as in Moin and Kim [2]: Crank–Nicolson for the viscous term and Adam–Brashforth
for the convective term (see also Moin and Kim [3] and Le and Moin [4]). A Fourier–
Chebyshev fully spectral method has also been used by Orszag and Kells [5] for the analysis
of both linear and nonlinear stability of plane Poiseuille and plane Couette �ows, and by
Malik et al. [6] in which a preconditioned iterative technique has been used to solve the
implicit portion of the numerical problem; in Reference [6] the accuracy of the Fourier–
Chebychev formulation is compared with that of a mixed Fourier-�nite di�erence algorithm
by monitoring the evolution of small amplitude perturbations of the mean �ow. Herring
et al. [7] found (among others) that spectral methods require roughly half as much reso-
lution in space with respect to the �nite di�erence schemes to yield comparable accuracy.
Fully �nite di�erence techniques in conjunction with Sub-Grid Scale models for turbulence

simulation have been applied to the case of the plane channel by Deardor� [8], Schumann [9]
and Horiuti [10]; in Reference [10] conservative and rotational forms of the Navier–Stokes
equations are compared by using a mixed Fourier-�nite di�erence formulation. Rai and Moin
[11] developed a spatially high-order-accurate upwind-biased fully �nite di�erence scheme
on a staggered grid: they tested their results by monitoring the evolution of small-amplitude
disturbances of the mean �ow and computing the fully developed channel �ow at 3300 for
comparison with Reference [1]; they found—among other results—that high-order upwind
schemes can yield satisfactory estimates of the evolution of �ow instabilities, but a minimum
number of grid points is required in order to obtain accurate solutions. Kravcenko and Moin
[12] found that aliasing errors are dominant in spectral and high-order �nite di�erence meth-
ods, while truncation errors are relevant in low-order �nite di�erences. Tafti [13] performed
a study for the comparison of high-order formulations with second-order central-di�erence
schemes for the numerical integration of the Navier–Stokes equations; one of his �nal con-
clusions is that high-order �nite di�erence schemes do not add su�ciently greater accuracy
to the results, to justify the extra computational e�ort associated with their use.
Mixed algorithm have also been tested; a spectral-�nite di�erences scheme for the Navier–

Stokes equations in the plane channel has been developed by Garg et al. [14]. In space,
they used Fourier decomposition in the homogeneous directions and �nite di�erences in the
direction orthogonal to the solid walls; in time, a semi-implicit scheme was used, third-order
Runge–Kutta for the convective terms and the planar horizontal viscous terms, and Crank–
Nicolson for the vertical viscous term.
Overall, a certain number of computational codes for the Navier–Stokes equations applied

to the channel �ow case and based on fully spectral, fully �nite di�erence and hybrid spectral-
�nite di�erence algorithms can be found in the literature, but very seldom are they tested with
respect to hydrodynamic stability theory; moreover, and exception made for Reference [6],
such tests are limited to purely spectral (Reference [5] reports the only test in the nonlinear
�eld) or purely �nite di�erence schemes.
The aim of this work is to assess the properties of a number of hybrid spectral-�nite

di�erence numerical algorithms for the Navier–Stokes equations applied to the case of the
channel �ow, with respect to hydrodynamic stability in both linear and nonlinear �elds (see
Reference [15] for a detailed description of the basic algorithm). Hydrodynamic stability is
a fundamental test for numerical schemes for viscous �uid �ow equations and is related to
both accuracy and numerical dissipation [16–18].
Hydrodynamic stability in the channel �ow can be brie�y summarized by distinguishing

between linear stability (evolution of small amplitude perturbations of the mean �ow) and
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stability in the nonlinear �eld (evolution of �nite amplitude perturbations) (see also the re-
view of Bayly et al. [19]). In the linear �eld, the evolution of small amplitude perturbations
can be monitored by comparing the numerical solutions given by Navier–Stokes algorithms
with that of the Orr–Sommerfeld equation; this part is discussed in Section 4 (Section 2
is devoted to the description of the numerical schemes and Section 3 to preliminary tests).
Squire’s theorem can also be recalled: if, at a given Reynolds number, an unstable three-
dimensional disturbance exists, an unstable two-dimensional disturbance exists at a lower
value of the Reynolds number. As a consequence, the �rst unstable mode must be two-
dimensional.
There is no theory for the evolution of �nite amplitude perturbations. Early work in this

�eld has been performed experimentally: Klebano� et al. [20], Patel and Head [21] and Kao
and Park [22] (a comparison with the results of Reference [22] can be found in Tatsumi and
Yoshimura [23]) found that the transition Reynolds number depends on both spectrum and am-
plitude of the two- and three-dimensional induced disturbances. In the numerical �eld, Herbert
[24; 25] analyzed both two- and three-dimensional �nite amplitude perturbations with respect
to the stability of the channel �ow by using a fully spectral Fourier–Chebyshev technique.
A study about instability and transition to turbulence in plane Poiseuille and plane Couette
�ows has been performed by Orszag and Kells [5]; they used a fully spectral numerical al-
gorithm of the same type as Herbert’s and considered both two- and three-dimensional �nite
amplitude disturbances. Section 5 of this work is devoted to the presentation of the nonlinear
stability tests that have been performed in this research with the use of hybrid spectral-
�nite di�erence discretizations; further discussion and comparisons with Reference [5], are
provided.

2. NUMERICAL SCHEMES

The incompressible Navier–Stokes equations in non-dimensional conservative form and the
continuity equation are considered (index notation, i; j=1; 2; 3, summation convention
applies):

@tui + @j(uiuj) =−@ip+ 1
Re
@j@jui (1)

@iui =0 (2)

where Re is the Reynolds number. Spatial coordinates and velocity components are named
x; y; z and u; v; w, respectively; variables are non-dimensionalized by using the channel half-
width (h) and the steady-state centerline velocity (umax); the �ow �elds are admitted to be
periodic in x and z (the physical streamwise and spanwise directions, see Figure 1 for a plot
of the system geometry) and the system of the governing equations is Fourier-transformed
in those directions. The nonlinear terms of the momentum equation are evaluated pseudo-
spectrally, by anti-transforming the velocities in physical space and performing the products:
to avoid aliasing errors the 2=3 rule has been enforced. The spatial derivatives along y are
evaluated by means of a second-order centered �nite di�erence scheme (see Reference [15]
for further details).
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Figure 1. The computational domain.

Scheme 1.

The x-component of the velocity is considered to be the sum of a mean part �u= �u(y; t) and
a perturbation u′= u′(x; y; z; t); this decomposition can be relevant—with respect to round-o�
errors—when u2 quantities with small u′s have to be computed. The whole convective term
and the x and z viscous terms are incorporated in the following de�nitions:

Cu( �u; û′; v̂′; ŵ′) = ikx(2 �uû′ + û
′2) +

@( �uv̂′ + û′v′)
@y

+ ikz( �uŵ′ + û′w′) +
1
Re
k 2û′ (3a)

Cv( �u; û′; v̂′; ŵ′) = ikx( �uv̂′ + v̂′u′) +
@(v̂′2)
@y

+ ikz(v̂′w′) +
1
Re
k 2v̂′ (3b)

Cw( �u; û′; v̂′; ŵ′) = ikx( �uŵ′ + ŵ′u′) +
@(ŵ′v′)
@y

+ ikz(ŵ
′2) +

1
Re
k 2ŵ′ (3c)

where ‘∧’ denotes the Fourier-transformed variables and k 2 = k 2x + k
2
z . The time advancement

is performed by means of a semi-implicit technique: a fourth-order Runge–Kutta scheme is
used for the terms in Equations (3), while a second-order Crank–Nicolson scheme is used for
the viscous term along the direction orthogonal to the solid walls (y); a uniform, staggered
mesh is used. For each Fourier mode the following equations hold:

û′(t +�t) = û′(t)− 1
6
�t(Cu0 + 2Cu1 + 2Cu2 + Cu3)

+
1
Re
�t
1
2

(
@2û′(t +�t)

@y2
+
@2û′(t)
@y2

)
− ikx�̂ (4a)
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v̂′(t +�t) = v̂′(t)− 1
6
�t(Cv0 + 2Cv1 + 2Cv2 + Cv3)

+
1
Re
�t
1
2

(
@2v̂′(t +�t)

@y2
+
@2v̂′(t)
@y2

)
− @�̂
@y

(4b)

ŵ′(t +�t) = ŵ′(t)− 1
6
�t(Cw0 + 2Cw1 + 2Cw2 + Cw3)

+
1
Re
�t
1
2

(
@2ŵ′(t +�t)

@y2
+
@2ŵ′(t)
@y2

)
− ikz�̂ (4c)

The system of equations to be numerically solved (besides continuity) is composed of three
equations in the perturbation components of the velocity and one equation in the mean part
of the x-velocity:

�u(t +�t) = �u(t) +
1
Re
�t
1
2

(
@2 �u(t +�t)

@y2
+
@2 �u(t)
@y2

)
−�t

(
@p
@x

)
(5)

In Equations (4), �̂ is the average of the perturbation pressure over �t. At each substep
of the Runge–Kutta procedure, the fractional step method [26; 27] is applied: intermediate
variables are introduced, mass conservation is enforced, the pressure equation is solved and
the intermediate values of the velocity are corrected with the pressure. The implicit part of
the time advancement procedure and the spatial �nite di�erence discretization in the direction
orthogonal to the solid walls bring to linear systems of algebric equations of tridiagonal type:
the Thomas algorithm is used for their solution. Boundary conditions of no slip at the walls
and periodic conditions in the streamwise and spanwise directions, have been imposed.

Scheme 1a.

To explore the in�uence of grid stretching near the walls where the steepest gradients are
present, two stretching laws for the grid points along y have been introduced; (i) geometric
progression:

�yj=G�yj−1 (6)

where G is a weighting factor (G=0:96 in most simulations), and (ii) hyperbolic tangent:

ystr = Py + (1− P)
(
1− tanh[Q(1− y)]

tanhQ

)
(7)

where P and Q are two parameters characterizing the distribution (P and Q=1:9 in most
simulations). The partial derivatives along y are calculated accordingly.

Scheme 1b.

In Scheme 1, a staggered mesh in all directions is used. The staggered mesh enhances the
conservation properties of the numerical discretizations but also introduces numerical dissi-
pation where interpolations are performed, particularly within the process of pseudo-spectral
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evaluation of the nonlinear terms. Scheme 1b utilizes a mesh staggered only along y (here-
inafter named nonstaggered); the pressure is collocated at the center of each cell and all three
components of the velocity at the same point at the center of the side of the cell orthogonal
to y. This choice simpli�es the calculation of the nonlinear terms and the implementation of
the boundary conditions.

Scheme 2.

In Scheme 1 the viscous term is treated implicitly along y and explicitly along x and z. More
stringent accuracy requirements for better representation of turbulent small scales suggest to
treat implicitly the whole di�usive part of the equations. In Scheme 2 the convective term is
treated explicitly and separated from the viscous term, which is handled implicitly in full, by
means of the �nite di�erence scheme. This kind of formulation—numerically rather stable—
has been already used in cases of Direct Numerical Simulation of turbulence (DNS, see
Reference [28] among others). Equations (3) become:

Cu( �u; û′; v̂′; ŵ′) = ikx(2 �uû′ + û
′2) +

@( �uv̂′ + û′v′)
@y

+ ikz( �uŵ′ + û′w′) (8a)

Cv( �u; û′; v̂′; ŵ′) = ikx( �uv̂′ + v̂′u′) +
@(v̂′2)
@y

+ ikz(v̂′w′) (8b)

Cw( �u; û′; v̂′; ŵ′) = ikx( �uŵ′ + ŵ′u′) +
@(ŵ′v′)
@y

+ ikz(ŵ
′2) (8c)

and Equations (4):

û′(t +�t) = û′(t)− 1
6
�t(Cu0 + 2Cu1 + 2Cu2 + Cu3) +

1
Re
�t
1
2

(
@2û′(t +�t)

@y2

+
@2û′(t)
@y2

− k 2û′(t +�t)− k 2û′(t)
)
− ikx�̂ (9a)

v̂′(t +�t) = v̂′(t)− 1
6
�t(Cv0 + 2Cv1 + 2Cv2 + Cv3) +

1
Re
�t
1
2

(
@2v̂′(t +�t)

@y2

+
@2v̂′(t)
@y2

− k 2v̂′(t +�t)− k 2v̂′(t)
)
− @�̂
@y

(9b)

ŵ′(t +�t) = ŵ′(t)− 1
6
�t(Cw0 + 2Cw1 + 2Cw2 + Cw3) +

1
Re
�t
1
2

(
@2ŵ′(t +�t)

@y2

+
@2ŵ′(t)
@y2

− k 2ŵ′(t +�t)− k 2ŵ′(t)
)
− ikx�̂ (9c)

Scheme 3.

By adding up the expressions related to the mean part of the x-velocity �u and its perturbation
component u′, one obtains a new formulation, in which in the time marching only three
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equations are involved; Equations (8) become:

Cu( �u; û′; v̂′; ŵ′) = ikx(û2) +
@(ûv′)
@y

+ ikz(ûw′) (10a)

Cv( �u; û′; v̂′; ŵ′) = ikx(v̂′u) +
@(v̂′2)
@y

+ ikz(v̂′w′) (10b)

Cw( �u; û′; v̂′; ŵ′) = ikx(ŵ′u) +
@(ŵ′v′)
@y

+ ikz(ŵ
′2) (10c)

and Equations (9):

û′(t +�t) = û′(t)− 1
6
�t(Cu0 + 2Cu1 + 2Cu2 + Cu3)

+
1
Re
�t
1
2

(
@2û′(t +�t)

@y2
+
@2û′(t)
@y2

− k 2û′(t +�t)− k 2û′(t)
)
− ikx�̂

+�t

(
@p
@x

)
�kx;0�kz;0 (11a)

v̂′(t +�t) = v̂′(t)− 1
6
�t(Cv0 + 2Cv1 + 2Cv2 + Cv3) +

1
Re
�t
1
2

(
@2v̂′(t +�t)

@y2

+
@2v̂′(t)
@y2

− k 2v̂′(t +�t)− k 2v̂′(t)
)
− @�̂
@y

(11b)

ŵ′(t +�t) = ŵ′(t)− 1
6
�t(Cw0 + 2Cw1 + 2Cw2 + Cw3) +

1
Re
�t
1
2

(
@2ŵ′(t +�t)

@y2

+
@2ŵ′(t)
@y2

− k 2ŵ′(t +�t)− k 2ŵ′(t)
)
− ikz�̂ (11c)

where � is the Kroneker delta.

Scheme 4.

A third-order Runge–Kutta algorithm for the time advancement is implemented in the com-
putational codes; the procedure of the fractional step method remains unchanged with respect
to Schemes 1–3. In index notation, one has:

ûki − ûk−1i

�t
= �kL(ûk−2i ) + �kL(ûk−1i )− �kN (ûk−1i )

− &kN (ûk−2i )− (�k + �k) @p̂
k

@xi
(12)

where:

L(ui) =
1
Re
@j@jui (13a)

N (ui) = @j(uiuj) (13b)
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Table I. Distinctive characters of the numerical schemes tested.

Scheme Grid Convective term Viscous term x-velocity

1 staggered fully explicit partially implicit u= �u+ u′

uniform 4th-order Runge–Kutta

1a staggered fully explicit partially implicit u= �u+ u′

non-uniform 4th-order Runge–Kutta

1b non-staggered fully explicit partially implicit u= �u+ u′

non-uniform 4th-order Runge–Kutta

2 non-staggered fully explicit fully implicit u= �u+ u′

non-uniform 4th-order Runge–Kutta

3 non-staggered fully explicit fully implicit u
non-uniform 4th-order Runge–Kutta

4 non-staggered fully explicit fully explicit u
non-uniform 3rd-order Runge–Kutta

are the di�usive and the convective terms respectively, and k=1; 2; 3 denotes the Runge–Kutta
sub-steps. Both advective and viscous terms are treated explicitly (see Reference [4] for the
implicit version of this scheme) and:

�1 =
8
15
; �2 =

5
12
; �3 =

3
4

&1 = 0; &2 =− 1760; &3 =− 5
12

(14a)

�1 = �1 =
4
15
; �2 =�2 =

1
15
; �3 =�3 =

1
6

(14b)

In Table I the distinctive characters of the di�erent formulations are summarized.

3. PRELIMINARY TESTS

Euler test

A �rst test, particularly directed to the veri�cation of the performance in the calculation of the
nonlinear terms with the Runge–Kutta algorithms, has been performed on the Euler equation:

@tui + @j(uiuj)= − @ip (15)

Scheme 3 with geometric progression stretching law, has been mainly used. The following—
divergence free—initial conditions have been introduced (see also Moin and Kim [3]):

u= �
Lx
2
sin(�y) cos

(
4�x
Lx

)
sin
(
2�z
Lz

)
+ 1 (16a)

v=− �(1 + cos(�y)) sin
(
4�x
Lx

)
sin
(
2�z
Lz

)
(16b)

w=− � Lz
2
sin
(
4�x
Lx

)
sin(�y) cos

(
2�z
Lz

)
+ 1 (16c)
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Figure 2. Euler test: evolution of the energy with time (number of x-, y-, z-grid points
Nx=32, Ny=33, Nz =32).

where Lx; Lz are the lengths of the computing domain in x and z, respectively and � is the
amplitude (�=0:01). In Figure 2 the values of the energy (normalized with respect to the
initial value) with time, are reported (�t=0:01).

Burgers test

A second test, particularly directed to the control of the advection–di�usion balance, has been
performed by using the one-dimensional (nondimensional) Burgers equation (06x62�; 06t
6∞):

@tu+ @x(uu)=
1
Re
@x@xu (17)

with:

u(x; 0)=− sin(x) (18)

as initial condition and Re=30 (see also Huser [29]). The solution is:

u(x; t) =− 2
Re�

@�
@x

(19)

�(x; 0) = e[−
1
2 Re cos(x)] (20)

@�
@t
=
1
Re
@2�
@x2

(21)
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Figure 3. Burgers test: comparison of the numerical solution ((�) t=3; (N) t=6) with the analytical
((–) t=3; (×) t=6).
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Figure 4. Burgers test: spectra of the numerical solutions ((N) t=3, (•) t=6).

Scheme 3 has been mainly used. In Figure 3 the numerical solution of the Burgers equation
is compared with the analytical at di�erent nondimensional times. The small discrepancies
between numerical results and analytical solution at t=3 are due to the in�uence—at the
beginning of the temporal evolution of the calculations—of the initial conditions on the results;
already at t=6 these di�erences are no more evident. In Figure 4 the spectra of the numerical
solutions are reported (�t=0:01).

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 38:1069–1089



HYBRID SPECTRAL–FINITE-DIFFERENCE NUMERICAL ALGORITHMS 1079

4. EVOLUTION OF SMALL AMPLITUDE PERTURBATIONS

When small amplitude velocity perturbations, eigensolutions of the Orr–Sommerfeld equation,
are superimposed to the steady-state mean velocity pro�le and integrated in time, the solution
arising from the numerical approximation of the Navier–Stokes equations can be compared
with that given by the linear fourth-order Orr–Sommerfeld equation (see Reference [30] among
others):

(U − c)
[
d2’
dy2

− �2’
]
− ’ d

2U
dy2

=
1
i�Re

[
d2

dy2
− �2

]2
’ (22)

Equation (22) results from the insertion in the two-dimensional, nearly-parallel, steady-state
�uid �ow equations (‘capital’ quantities), of forms of the velocity and the pressure in which
three-dimensional perturbations (‘primed’ quantities) are added to the steady state solutions;
in the limit of small amplitudes for the perturbations themselves (linear stability), the terms
of order two can be neglected and, as a result of further manipulations, a linear equation in
the perturbation �eld can be obtained. The form of the solution is:

u′(x; y; t) = �Real
[
d’(y)
dy

ei�(x−ct)
]

(23a)

v′(x; y; t) = �Real[i�’(y)ei�(x−ct)] (23b)

where ’(y) is the normalized eigenfunction, ! is the eigenfrequency (!=!r + !i), � the
perturbation wavenumber, c=(!=�); (c= cr+ci) and � the perturbation amplitude. The energy
associated to the perturbation is:

E(t) =
1
2

∫ 1

−1

∫ Lx

0
[u′2(x; y; t) + v′2(x; y; t)] dx dy (24)

where Lx=[(2�)=(�)] (it has been veri�ed that no energy contributions exist in the spanwise
direction z, i.e. w′2 = 0). The linear theory predicts [E(t))=E0)]= e2!it , where E0 is the energy
at t=0 and !i the imaginary part of !.
The computational tests have been performed at Re=7500, with �=1, �=0:0001 (normal-

ized) and the most unstable mode has been considered, characterized by c=0:24989154 +
i0:00223498 (�t=0:001). The calculations have been executed up to a nondimensional time
T =50=2t0, where t0 [t0 = ((2�)=(!r))= ((Lx)=(cr))] represents the time required to cover
the distance Lx; di�erent discretizations Ny have been used in the y direction, with a constant
32× 4 x; z discretization. In the present calculations the linear theory predictions have been
obtained by using a computational code for the numerical solution of the Orr–Sommerfeld
equation, based on Orszag’s method [31].
In Figure 5 the results of the linear stability tests obtained with the use of Scheme 1

(uniform grid) with di�erent y-discretizations, are reported and compared with the theoretical
solution. Figure 6 reports, for comparison, results of the same calculations obtained by Malik
et al. [6], with the use of their mixed spectral-�nite di�erence algorithm for the numerical
solution of the Navier–Stokes equations; among other comments, with 257 grid points along
y the results of the present work perform better with respect to the theoretical solution, as
compared with Reference [6].
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Figure 5. Scheme 1: evolution with time of the energy associated with the small amplitude perturbations
((�) Ny=33, (�) Ny=65, (×) Ny=129, (•) Ny=257, (–) theory).

Figure 6. Results of the same linear stability test reported in Figure 5, obtained with a mixed spectral
�nite di�erence algorithm by Malik et al. [6] with di�erent y-discretizations.

Further calculations have been performed: with two �xed values of the number of grid
points in the y direction (Ny=65 and Ny=129), all the di�erent numerical schemes have
been tested with respect to linear stability. In Figure 7 (Scheme 1a) results about the in�uence
in the calculations of the use of the two grid streching laws along y (geometric progression
and hyperbolic tangent), are reported, together—for better comparison—with the correspondent
results obtained with the uniform grid; with the use of a grid stretching law along y, the results
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Figure 7. Scheme 1a: evolution with time of the energy associated with the small amplitude
perturbations and di�erent grid stretching laws along y (Ny=65, (�) uniform grid, (N)
geometric progression, (•) hyperbolic tangent; Ny=129, (×) uniform grid, (-) geometric

progression, (�) hyperbolic tangent, (–) theory).

0

0.05

0.1

0.15

0.2

0.25

0 10 2 0 30 4 0 50

T

L
n 

E
/E

o

Figure 8. Scheme 1b: evolution with time of the energy associated with the small amplitude perturbations
and di�erent grid stretching laws along y (Ny=65, (N) geometric progression, (•) hyperbolic tangent;

Ny=129, (-) geometric progression, (�) hyperbolic tangent, (–) theory).

are remarkably better with respect to the uniform grid and, of the two stretching laws that
have been tested, the geometric progression performs even better with respect to the hyperbolic
tangent (in agreement with Rai and Moin [11]). In Figure 8 (Scheme 1b) combined results of
the in�uence of the use of a non-staggered grid together with the use of the two grid stretching
laws, are reported. In comparing the results of Figure 8 with Figure 5, the use of a non-
staggered grid is more e�ective at lower values of Ny (and lower nondimensional times), with
respect to higher values; also in this case, the geometric progression performs better that the
hyperbolic tangent stretching law. In Figure 9, results obtained by running Scheme 2 with the
two di�erent grid stretching laws, are reported. No remarkable di�erences appear with respect
to the use of Scheme 1b (Figure 8), meaning that the fully implicit treatment of the viscous
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Figure 9. Scheme 2: evolution with time of the energy associated with the small amplitude perturbations
and di�erent grid stretching laws along y (Ny=65, (N) geometric progression, (•) hyperbolic tangent;

Ny=129, (-) geometric progression, (�) hyperbolic tangent, (–) theory).
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Figure 10. Scheme 3: evolution with time of the energy associated with the small amplitude perturbations
and di�erent grid stretching laws along y (Ny=65, (N) geometric progression, (•) hyperbolic tangent;

Ny=129, (-) geometric progression, (�) hyperbolic tangent, (–) theory).

term performs analogously with respect to its partially implicit treatment (Section 2); the
geometric progression performs better than the hyperbolic tangent stretching law. In Figure 10,
results obtained by running Scheme 3 with two di�erent grid stretching laws, are reported;
the whole computational code is simpler in this case with respect to Scheme 2, and the
computations proceed more rapidly; the di�erence in the results produced by using the two
grid streching laws is less pronounced with Ny=129. Figure 11 reports the results obtained
with Scheme 4; the use of the 3rd-order Runge–Kutta scheme does not change substantially
the level of the accuracy of the results with respect to the use of the 4th-order, according to
the stability test in the linear �eld (evolution of small amplitude perturbations).
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Figure 11. Scheme 4: evolution with time of the energy associated with the small amplitude perturbations
and di�erent grid stretching laws along y (Ny=65; (N) geometric progression, (•) hyperbolic tangent;

Ny=129, (-) geometric progression, (�) hyperbolic tangent, (–) theory).

5. EVOLUTION OF FINITE AMPLITUDE PERTURBATIONS

In summary, instability in the channel �ow can be caused by: (i) a two-dimensional small
amplitude perturbation (linear �eld) at values of the Reynolds number greater than 5772 (see
Reference [31] among others); (ii) a two-dimensional �nite amplitude perturbation (nonlinear
�eld) at values of the Reynolds number greater than 2935 (see References [24; 25]); (iii)
a three-dimensional �nite amplitude perturbation at values of the Reynolds number close
to 1000. In the linear �eld, the hydrodynamic stability theory enables the calculation of the
minimum value of the Reynolds number such as eigenvalues c exist, with ci=0 (the condition
of neutral stability, Recr =5772, �cr =1:02055, see Orszag [31]).
No theory exists in the nonlinear �eld, in which stability, besides Re and �, depends also

on the perturbation amplitude: critical conditions have to be studied from the analysis of
numerical solutions of the Navier–Stokes equations (see for example Herbert [24] in which
Recr =2935 and �cr =1:3231 have been determined for two-dimensional disturbances). Orzag
and Kells [5] studied the stability of the channel �ow with �nite amplitude disturbances as a
function of Re; � and the initial value of the perturbation amplitude; they used a fully spectral
computational code for the Navier–Stokes equations and obtained accurate results that can be
used as a reference case.
To test the properties of the Navier–Stokes discretizations considered in this work with

respect to hydrodynamic stability in the nonlinear �eld, some of the calculations reported in
Reference [5] have been executed; �nite amplitude perturbations, ampli�ed solutions of the
Orr–Sommerfeld equation, have been superimposed to the steady-state mean velocity in the
channel. Three tests have been performed: test A, characterized by a perturbation amplitude
(�) decaying with time, test B, with perturbation amplitude stable with time and test C, with
perturbation amplitude slightly growing with time, according to Reference [5], respectively
(see Table II). Equation (22) has been solved and the most unstable mode has been con-
sidered, characterized by c=0:328986 + i0:013751. The form of the perturbation is given by
Equation (23) and != �c=0:435282− i0:0181933.
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Table II. Finite amplitude perturbations: characteristic parameters used in the calculations.

Test A Test B Test C

Reynolds number 2935 2935 2935
Perturbation wavenumber (�) 1.3231 1.3231 1.3231
Real ! 0.435282 0.435282 0.435282
Im ! 0.0181933 0.0181933 0.0181933
Initial amplitude (�) 0.072 0.108 0.182
Nx ×Ny ×Nz 32× 129× 4 32× 129× 4 32× 129× 4
Time step �t 0.001 0.001 0.001
Final time T 100 100 150
Behavior according to Reference [5] Decay Neutral Weak growth

Figure 12. Finite amplitude perturbations. Plot of the y pro�le of the x-velocity component of the
disturbance of test A at t=120 ((�) present work, (–) Reference [5]).

The results are reported in terms of:

A1(t) = max
y
[û′(kx=1; y; kz=0; t)]=A (25a)

A2(t) = max
y
[û′(kx=2; y; kz = 0; t)]=A (25b)

where A1(t) is the max in y of the �rst harmonic and A2(t) is the max in y of the second
harmonic (A refers to Figures 15, 16 and 17).
In Figure 12, the plot of the y pro�le of the x-velocity component of the disturbance of test

C is shown at the (nondimensional) time t=120, together with the one reported in Reference
[5]. In Figure 13, the plot of the mean velocity �u(y) of test C at t=120 is shown together
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Figure 13. Finite amplitude perturbations. Plot of the mean velocity �u(y) of test A at t=120 ((�)
present work, (–) correspondent Poiseuille pro�le, (–) Reference[5]).

Figure 14. Finite amplitude perturbations. Plot of the curvature − �u′′(y) of the
mean velocity pro�le of test A at t=120 ((�) present work, (–) curvature of

the correspondent Poiseuille pro�le, (–) Reference [5]).

with the corresponding Poiseuille pro�le and the one reported in Reference [5]. In Figure 14,
the plot of the curvature − �u′′(y) of the mean velocity pro�le of test C at t=120 is shown
together with the curvature of the corresponding Poiseuille pro�le and the one reported in
Reference [5].
The three tests in the nonlinear �eld have been �rst executed by using scheme 4; Figures 15,

16 and 17 show the results of tests A; B and C, respectively, obtained with scheme 4; for
better comparison, these results have been superimposed to the results of the reference case
(Orszag and Kells [5]), showing a satisfactory agreement in all three cases, decay of the
perturbation amplitude in case A (Figure 15), stable perturbation in case B (Figure 16) and
weak growth in case C.
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Figure 15. Finite amplitude perturbations, scheme 4, test A. Evolution with time of the maximum
amplitude in y, primary (�rst harmonic) and harmonic (second harmonic, see Reference [5]); (•)

present work, (–) results of Reference [5].

Figure 16. Finite amplitude perturbations, scheme 4, test B. Evolution with time of the maximum
amplitude in y, primary (�rst harmonic) and harmonic (second harmonic, see Reference [5]); (N)

present work, (–) results of Reference [5].
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Figure 17. Finite amplitude perturbations, scheme 4, test A. Evolution with time of the maximum
amplitude in y, primary (�rst harmonic) and harmonic (second harmonic, see Reference [5]); (•)

present work, (–) results of Reference [5].

Tests A; B and C have also been executed by using scheme 1; the behavior of this scheme
has resulted remarkably dissipative in all three cases, especially for what the primary harmonic
is concerned; with respect to the dissipative character of scheme 1, the main di�erence between
scheme 1 and scheme 4 consists of the partially implicit vs fully explicit treatment of the
viscous term, respectively (see Table I).

6. CONCLUDING REMARKS

Overall, the linear stability tests have shown a satisfactory agreement of the numerical formu-
lations tested in the present work with the theoretical solution o�ered by the hydrodynamic
stability theory. In more detail, the following can be pointed out: (i) the use of a grid stretch-
ing law along y produces better results particularly with a limited number of y grid points;
(ii) the geometric progression performs generally better than the hyperbolic tangent law, in
agreement with Reference [11]; (iii) the use of a grid staggered in one direction only, does
not appreciably alter the conservation properties with respect to a grid staggered in all three
directions (in both cases @ivi ∼=10−8); (iv) in using scheme 2, no remarkable di�erences have
been noticed between the fully implicit and the partially implicit treatment of the viscous term
(Section 2); (v) in using schemes 3 and 4, no remarkable round-o� errors have been detected
for what the numerical treatment of u is concerned; (vi) no remarkable di�erences have been
detected in using the 3rd-order Runge–Kutta algorithm with respect to the 4th-order.
The calculations performed with �nite amplitude perturbations have shown di�erences in

the behaviour of scheme 1 with respect to scheme 4. The results of scheme 4 are in good
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agreement with Reference [5] (Figures 15, 16, and 17), while those of scheme 1 have shown
an excess of dissipation; this circumstance can be explained with the di�erent numerical
handling of the viscous term in the two schemes. Thus the stability tests in the nonlinear �eld
have shown di�erences in the computational schemes, not detectable by limiting the tests to
the linear �eld.
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